
1.

- (A) Explain- All Chiral Centre's are Stereogenic centres but all Stereogenic centres are not Chiral centres. [1.5]
- (B) Heat of combustion and not heat of hydrogenation is more suitable to compare the stabilities of 1-butene, cis-2-butene, trans-2-butene and isobutene Explain. [3]
- (C) Write down the structure of a Chiral molecule having a C_2 axis. [0.5]

2.

(A) Predict the products- [3]

HCI

(B) Salicylic acid is much stronger than p-hydroxy benzoic acid but acidity of o-nitrophenol and p-nitrophenol is almost same - Explain. [2]

3.

- (A) The enol content of acetylacetone at equilibrium is very large (92%) in hexane medium, in acetonitrile (58%) medium, and small (15%) in water. Offer an Explanation. [3]
- (B) Draw the following as indicated [2]
 - (i) (Z,E) isomer of Benzildioxime.
 - (ii) Anti-conformer of $\ PhCH(OH)CH(CH_3)COCH_3$.

4.

(A) Assign the following compounds with R/S Descriptor. [3]

(i)
$$D_3C \cdots$$
 $C = C - CH_3$

(5)

- (A) Draw all the π -molecular orbitals of allyl cation, allyl anion and allyl radical. Arrange them in order of increasing energy levels. Identify the HOMO and LUMO in each case. [3]
- (B) Compare the base strengths of Ethylamine, Guanidine and Ethanamidine and Explain. [2]

(6)

(A) The azo compound (A) decomposes 20 times faster than the compound (B). Suggest the reason for this observation. [2]

(B) Account for the stereochemical course involved in each step of the following reaction sequence and give the three dimensional structures with R/S- designation for A, B and C. [3]

$$\begin{array}{c} H \\ HO \end{array} \begin{array}{c} P-CH_3-C_6H_5SO_2CI \\ \end{array} \begin{array}{c} A \end{array} \begin{array}{c} CH_3COO \\ \end{array} \begin{array}{c} \Theta \\ OH \end{array} \begin{array}{c} OH \\ \end{array} \end{array}$$

(7)

(A) A two step reaction with $K_H/K_D = 7$ is given :

Draw and explain the energy profile diagram for the reaction showing the transition state(s) and intermediate. Indicate the rate determining as well. [3]

(B) Which one of the following has higher dipole moment and why? [2] Vinyl Chloride and Vinyl fluoride

(8)

- (A) What are the necessary conditions to show optical activity of a compound? What will be the Optical Purity of a Chiral substrate if it contains the two enantiomers in the ratio of 3:1. [2]
- (B) Explain the following reactions with plausible mechanism and give the structure of A and B.

$$\begin{array}{c} \text{SOCl}_2/\text{ether} \\ \\ \text{(S)-1-phenylethanol} \end{array} \qquad \begin{array}{c} \text{SOCl}_2/\text{Pyridine} \\ \\ \text{B} \end{array} \qquad \begin{bmatrix} 3 \end{bmatrix}$$

(9)

(A) Transform: [3]

(B) Write down the course of the reaction giving appropriate mechanism: [2]

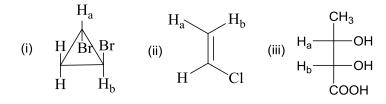
$$NO_{2}^{\bigoplus}BF_{4}^{\bigcirc}$$

(10)

- (A) Draw the orbital pictures of singlet and triplet Carbene. Comment on their bond angle. [3]
- (B) Predict the product and explain: [2]

(11)

(A) Label the following as <u>Homomer</u>, <u>enantiomer</u> or <u>diastereomer</u>. [3]


(B) Predict configuration of products when-

[2]

- (i) Pro-R- hydrogen of propanol is replaced by Br.
- (ii) CN⁻ is attacked from the R_e face of Propanol.

(12)

(A) Identify H_a and H_b in each of the following structures as <u>Homotopic</u>, <u>Enantiotopic</u> or <u>Diastereotopic</u> ligands. [3]

(B) Comment on the Optical activity of MeN(Ph)CH₂Me and its corresponding N-oxide. [2]

[Note: IIT-JEE & Medical aspirants, whoever love Organic Chemistry can also try to solve the question .]

******Do Well**********************